Chapter 1: Introduction

1.1 Overview of Number Theory

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship:

 $a = qn + r \qquad 0 \le r < n; q = \lfloor a/n \rfloor \tag{1}$

where $\lfloor x \rfloor$ is the largest integer less than or equal to x. (qn \leq a)

Example:

a= 70 ; n = 15;	70 = (4 * 15) + 10
a= 11 ; n = 7;	11 = (1 * 7) + 4
a= -11 ; n = 7;	-11 = (-2 * 7) + 3

THE EUCLIDEAN ALGORITHM

Greatest Common Divisor

Recall that nonzero *b* is defined to be a divisor of *a* if a = mb for some *m*, where *a*, *b*, and *m* are integers. We will use the notation gcd(a, b) to mean the **greatest common divisor** of *a* and *b*. The greatest common divisor of *a* and *b* is the largest integer that divides both *a* and *b*. We also define gcd(0, 0) = 0.

Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(|a|, |b|).

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$
b = 316258250	$r_1 = 211943434$	$q_2 = 1$	$r_2 = 104314826$
$r_1 = 211943424$	$r_2 = 104314826$	$q_3 = 2$	$r_3 = 3313772$
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	$r_4 = 1587894$
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	$r_5 = 137984$
$r_4 = 1587894$	$r_5 = 137984$	$q_6 = 11$	$r_6 = 70070$
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	$r_7 = 67914$
$r_6 = 70070$	$r_7 = 67914$	$q_8 = 1$	$r_8 = 2156$
$r_7 = 67914$	$r_8 = 2156$	$q_9 = 31$	$r_9 = 1078$
$r_8 = 2156$	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$

 $gcd(a, b) = gcd(b, a \mod b)$

(2)

MODULAR ARITHMETIC

 $11 \mod 7 = 4$; $-11 \mod 7 = 3$

 $[(a \bmod n) + (b \bmod n)] \bmod n = (a+b) \bmod n$

 $[(a \bmod n) - (b \bmod n)] \bmod n = (a - b) \bmod n$

 $[(a \bmod n) * (b \bmod n)] \bmod n = (a * b) \bmod n$

The Extended Euclidean Algorithm

 $ax + by = d = \gcd(a, b)$

Extended Euclidean Algorithm						
Calculate	Which satisfies	Calculate	Which satisfies			
$r_{-1} = a$		$x_{-1} = 1; y_{-1} = 0$	$a = ax_{-1} + by_{-1}$			
$r_0 = b$		$x_0 = 0; y_0 = 1$	$b = ax_0 + by_0$			
$r_1 = a \mod b$ $q_1 = \lfloor a/b \rfloor$	$a = q_1 b + r_1$	$ \begin{array}{l} x_1 = x_{-1} - q_1 x_0 = 1 \\ y_1 = y_{-1} - q_1 y_0 = -q_1 \end{array} $	$r_1 = ax_1 + by_1$			
$r_2 = b \mod r_1$ $q_2 = \lfloor b/r_1 \rfloor$	$b = q_2 r_1 + r_2$		$r_2 = ax_2 + by_2$			
$r_3 = r_1 \mod r_2$ $q_3 = \lfloor r_1/r_2 \rfloor$	$r_1 = q_3 r_2 + r_3$	$ \begin{array}{l} x_3 = x_1 - q_3 x_2 \\ y_3 = y_1 - q_3 y_2 \end{array} $	$r_3 = ax_3 + by_3$			
•	•	•	•			
•	•	•	•			
•	•	•	•			
$r_n = r_{n-2} \mod r_{n-1}$ $q_n = \lfloor r_{n-2}/r_{n-1} \rfloor$	$r_{n-2} = q_n r_{n-1} + r_n$	$ x_n = x_{n-2} - q_n x_{n-1} y_n = y_{n-2} - q_n y_{n-1} $	$r_n = ax_n + by_n$			
$ \begin{aligned} r_{n+1} &= r_{n-1} \operatorname{mod} r_n = 0 \\ q_{n+1} &= \lfloor r_{n-1}/r_n \rfloor \end{aligned} $	$r_{n-1} = q_{n+1}r_n + 0$		$d = \gcd(a, b) = n$ $x = x_n; y = y_n$			

Example a= 1759; b=550

i	ri	q_i	xi	yi
-1	1759		1	0
0	550		0	1
1	109	3	1	-3
2	5	5	-5	16
3	4	21	106	-339
4	1	1	-111	355
5	0	4		

Result:
$$d = 1$$
; $x = -111$; $y = 355$

$$q_i = [r_{i-2}/r_{i-1}]; r_i = r_{i-2} \mod r_{i-1}$$

$$x_i = x_{i-2} - q_i \times x_{i-1}; \ y_i = y_{i-2} - q_i \times y_{i-1}$$

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, referred to as **Euler's totient function**. This function, written $\phi(n)$, is defined as the number of positive integers less than *n* and relatively prime to *n*. By convention, $\phi(1) = 1$.

(4)

DISCRETE LOGARITHMS

a	a^2	a^3	a^4	a^5	a ⁶	<i>a</i> ⁷	a^8	a ⁹	a^{10}	a ¹¹	a ¹²	a ¹³	<i>a</i> ¹⁴	a ¹⁵	a ¹⁶	a ¹⁷	a ¹⁸
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

1.2 RSA Algorithm

The Rivest-Shamir-Adleman (RSA) scheme has since 1977 is the most widely accepted and implemented general-purpose approach to public-key encryption.

Key Generation by Alice						
	Select p, q	$p \text{ and } q \text{ both prime}, p \neq q$				
	<i>Calculate</i> $n = p \times q$					
	Calcuate $\phi(n) = (p - 1)(q - 1)$					
	Select integer e	$\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$				
	Calculate d	$d \equiv e^{-1} \pmod{\phi(n)}$				
	Public key	$PU = \{e, n\}$				
	Private key	$PR = \{d, n\}$				

Encryption by Bob with Alice's Public Key				
Plaintext:	M < n			
Ciphertext:	$C = M^e \mod n$			

Decryption by Alice with Alice's Public Key			
Ciphertext:		С	
Plaintext:		$M = C^d \mod n$	

Example:

P=17; q=11 Find public and private keys? Find the cipher M=88?

1.3 DIFFIE-HELLMAN KEY EXCHANGE

Example:

q= 353; a=3; XA=97; XB=233; find the shared key ?

1.4 ELGAMAL CRYPTOGRAPHIC SYSTEM

	Global Public Elements
q	prime number
α	$\alpha < q$ and α a primitive root of q
	Key Generation by Alice
Select private X_A	$X_A < q - 1$
Calculate Y_A	$Y_A = \alpha^{X_A} \mod q$
Public key	$\{q, \alpha, Y_A\}$
Private key	X _A
Encryp	tion by Bob with Alice's Public Key
Plaintext:	M < q
Select random intege	$\mathbf{r} k \qquad k < q$
Calculate K	$K = (Y_A)^k \bmod q$
Calculate C_1	$C_1 = \alpha^k \mod q$
Calculate C_2	$C_2 = KM \mod q$
Ciphertext:	(C_1, C_2)
Decrypti	on by Alice with Alice's Private Key
Ciphertext:	(C_1, C_2)
Calculate K	$K = (C_1)^{X_A} \mod q$
Plaintext:	$M = (C_2 K^{-1}) \mod q$

Thus, K functions as a one-time key, used to encrypt and decrypt the message.

For example, let us start with the prime q = 19. It has primitive roots {2, 3, 10, 13, 14, 15}. We choose a = 10. Alice generates a key pair as follows:

- 1. Alice chooses XA = 5.
- 2. Then $YA = a^{XA} \mod q = a^5 \mod 19 = 3$
- 3. Alice's private key is 5 and Alice's public key is $\{q, a, YA\} = \{19, 10, 3\}$.

Suppose Bob wants to send the message with the value M = 17. Then:

- 1. Bob chooses k = 6.
- 2. Then $K = (YA)^k \mod q = 3^6 \mod 19 = 729 \mod 19 = 7$.
- 3. So

 $C1 = a^k \bmod q = a^6 \bmod 19 = 11$

 $C2 = KM \mod q = 7 * 17 \mod 19 = 119 \mod 19 = 5$

4. Bob sends the ciphertext (11, 5).

For decryption:

- 1. Alice calculates $K = (C1)^{XA} \mod q = 11^5 \mod 19 = 161051 \mod 19 = 7$.
- 2. Then K^{-1} is $7^{-1} \mod 19 = 11$.
- 3. Finally, $M = (C2K^{-1}) \mod q = 5 * 11 \mod 19 = 55 \mod 19 = 17$.