Chapter 1: Introduction

1.1 Overview of Number Theory

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship:

$$
\begin{equation*}
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor \tag{1}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the largest integer less than or equal to $x .(\mathrm{qn} \leq \mathrm{a})$
Example:

$$
\begin{array}{ll}
a=70 ; n=15 ; & 70=(4 * 15)+10 \\
a=11 ; n=7 ; & 11=(1 * 7)+4 \\
a=-11 ; n=7 ; & -11=(-2 * 7)+3
\end{array}
$$

THE EUCLIDEAN ALGORITHM

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if $a=m b$ for some m, where a, b, and m are integers. We will use the notation $\operatorname{gcd}(a, b)$ to mean the greatest common divisor of a and b. The greatest common divisor of a and b is the largest integer that divides both a and b. We also define $\operatorname{gcd}(0,0)=0$.

Because we require that the greatest common divisor be positive, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a$, $b)=\operatorname{gcd}(-a,-b)$. In general, $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$.

Dividend	Divisor		Quotient	Remainder	
$a=1160718174$	$b=316258250$	$q_{1}=3$	$r_{1}=211943424$		
$b=316258250$	$r_{1}=211943434$	$q_{2}=1$	$r_{2}=104314826$		
$r_{1}=211943424$	$r_{2}=104314826$	$q_{3}=2$	$r_{3}=3313772$		
$r_{2}=104314826$	$r_{3}=3313772$	$q_{4}=31$	$r_{4}=1587894$		
$r_{3}=3313772$	$r_{4}=1587894$	$q_{5}=2$	$r_{5}=$	137984	
$r_{4}=1587894$	$r_{5}=137984$	$q_{6}=11$	$r_{6}=$	70070	
$r_{5}=$	137984	$r_{6}=$	70070	$q_{7}=1$	
$r_{7}=$	70070	$r_{7}=$	67914	$q_{8}=1$	
$r_{7}=$	67914	$r_{8}=$	2156	$q_{9}=31$	
$r_{8}=$	2156				
$r_{8}=$	2156	$r_{9}=$	1078	$q_{10}=2$	

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

MODULAR ARITHMETIC

$11 \bmod 7=4 ;-11 \bmod 7=3$
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
$[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
$[(a \bmod n) *(b \bmod n)] \bmod n=(a * b) \bmod n$

The Extended Euclidean Algorithm

$a x+b y=d=\operatorname{gcd}(a, b)$

Extended Euclidean Algorithm			
Calculate	Which satisfies	Calculate	Which satisfies
$r_{-1}=a$		$x_{-1}=1 ; y_{-1}=0$	$a=a x_{-1}+b y_{-1}$
$r_{0}=b$		$x_{0}=0 ; y_{0}=1$	$b=a x_{0}+b y_{0}$
$\begin{aligned} & r_{1}=a \bmod b \\ & q_{1}=\lfloor a / b\rfloor \end{aligned}$	$a=q_{1} b+r_{1}$	$\begin{aligned} & x_{1}=x_{-1}-q_{1} x_{0}=1 \\ & y_{1}=y_{-1}-q_{1} y_{0}=-q_{1} \end{aligned}$	$r_{1}=a x_{1}+b y_{1}$
$\begin{aligned} r_{2} & =b \bmod r_{1} \\ q_{2} & =\left\lfloor b / r_{1}\right\rfloor \end{aligned}$	$b=q_{2} r_{1}+r_{2}$	$\begin{aligned} & x_{2}=x_{0}-q_{2} x_{1} \\ & y_{2}=y_{0}-q_{2} y_{1} \end{aligned}$	$r_{2}=a x_{2}+b y_{2}$
$\begin{aligned} & r_{3}=r_{1} \bmod r_{2} \\ & q_{3}=\left\lfloor r_{1} / r_{2}\right\rfloor \end{aligned}$	$r_{1}=q_{3} r_{2}+r_{3}$	$\begin{aligned} & x_{3}=x_{1}-q_{3} x_{2} \\ & y_{3}=y_{1}-q_{3} y_{2} \end{aligned}$	$r_{3}=a x_{3}+b y_{3}$
$\begin{aligned} r_{n} & =r_{n-2} \bmod r_{n-1} \\ q_{n} & =\left\lfloor r_{n-2} / r_{n-1}\right\rfloor \end{aligned}$	$r_{n-2}=q_{n} r_{n-1}+r_{n}$	$\begin{aligned} & x_{n}=x_{n-2}-q_{n} x_{n-1} \\ & y_{n}=y_{n-2}-q_{n} y_{n-1} \end{aligned}$	$r_{n}=a x_{n}+b y_{n}$
$\begin{aligned} & r_{n+1}=r_{n-1} \bmod r_{n}=0 \\ & q_{n+1}=\left\lfloor r_{n-1} / r_{n}\right\rfloor \end{aligned}$	$r_{n-1}=q_{n+1} r_{n}+0$		$\begin{aligned} & d=\operatorname{gcd}(a, b)=r_{n} \\ & x=x_{n} ; y=y_{n} \end{aligned}$

Example $a=1759 ; b=550$

\boldsymbol{i}	$\boldsymbol{r}_{\boldsymbol{i}}$	$\boldsymbol{q}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$
-1	1759		1	0
0	550		0	1
1	109	3	1	-3
2	5	5	-5	16
3	4	21	106	-339
4	1	1	-111	355
5	0	4		

Result: $d=1 ; x=-111 ; y=355$
$q_{i}=\left\lfloor r_{i-2} / r_{i-1}\right\rfloor ; r_{i}=r_{i-2} \bmod r_{i-1}$
$x_{i}=x_{i-2}-q_{i} \times x_{i-1} ; y_{i}=y_{i-2}-q_{i} \times y_{i-1}$

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, referred to as Euler's totient function. This function, written $\phi(n)$, is defined as the number of positive integers less than n and relatively prime to n. By convention, $\phi(1)=1$.

DISCRETE LOGARITHMS

For the prime number 19 , its primitive roots are $2,3,10,13,14$, and 15 .

$\boldsymbol{a} \boldsymbol{a}$	$\boldsymbol{a}^{\mathbf{2}}$	$\boldsymbol{a}^{\mathbf{3}}$	$\boldsymbol{a}^{\mathbf{4}}$	$\boldsymbol{a}^{\mathbf{5}}$	$\boldsymbol{a}^{\mathbf{6}}$	$\boldsymbol{a}^{\mathbf{7}}$	$\boldsymbol{a}^{\mathbf{8}}$	$\boldsymbol{a}^{\mathbf{9}}$	$\boldsymbol{a}^{\mathbf{1 0}}$	$\boldsymbol{a}^{\mathbf{1 1}}$	$\boldsymbol{a}^{\mathbf{1 2}}$	$\boldsymbol{a}^{\mathbf{1 3}}$	$\boldsymbol{a}^{\mathbf{1 4}}$	$\boldsymbol{a}^{\mathbf{1 5}}$	$\boldsymbol{a}^{\mathbf{1 6}}$	$\boldsymbol{a}^{\mathbf{1 7}}$	$\boldsymbol{a}^{\mathbf{1 8}}$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

1.2 RSA Algorithm

The Rivest-Shamir-Adleman (RSA) scheme has since 1977 is the most widely accepted and implemented general-purpose approach to public-key encryption.

\quad Key Generation by Alice	
Select p, q	p and q both prime, $p \neq q$
Calculate $n=p \times q$	
Calcuate $\phi(n)=(p-1)(q-1)$	$\operatorname{gcd}(\phi(n), e)=1 ; 1<e<\phi(n)$
Select integer e	$d \equiv e^{-1}(\bmod \phi(n))$
Calculate d	$P U=\{e, n\}$
Public key	$P R=\{d, n\}$
Private key	

Encryption by Bob with Alice's Public Key
Plaintext: $\quad M<n$
Ciphertext: $\quad C=M^{e} \bmod n$

Decryption by Alice with Alice's Public Key
Ciphertext:
C
Plaintext:
$M=C^{d} \bmod n$

Example:

$\mathrm{P}=17$; $\mathrm{q}=11$ Find public and private keys? Find the cipher $\mathrm{M}=88$?

1.3 DIFFIE-HELLMAN KEY EXCHANGE

Alice and Bob share a
prime number q and an
integer α, such that $\alpha<q$ and
α is a primitive root of q

Alice and Bob share a
prime number q and an
integer α, such that $\alpha<q$ and
α is a primitive root of q

Example:
$q=353 ; a=3 ; X A=97 ; X B=233$; find the shared key?

1.4 ELGAMAL CRYPTOGRAPHIC SYSTEM

	Global Public Elements
q	prime number
α	$\alpha<q$ and α a primitive root of q

	Key Generation by Allce
Select private X_{A}	$X_{A}<q-1$
Calculate Y_{A}	$Y_{A}=\alpha^{X_{A}} \bmod q$
Public key	$\left\{q, \alpha, Y_{A}\right\}$
Private key	X_{A}

Encryption by Bob with Alice's Public Key	
Plaintext:	$M<q$
Select random integer k	$k<q$
Calculate K	$K=\left(Y_{A}\right)^{k} \bmod q$
Calculate C_{1}	$C_{1}=\alpha^{k} \bmod q$
Calculate C_{2}	$C_{2}=K M \bmod q$
Ciphertext:	$\left(C_{1}, C_{2}\right)$

Decryption by Alice with Alice's Private Key	
Ciphertext:	$\left(C_{1}, C_{2}\right)$
Calculate K	$K=\left(C_{1}\right)^{X_{A}} \bmod q$
Plaintext:	$M=\left(C_{2} K^{-1}\right) \bmod q$

Thus, K functions as a one-time key, used to encrypt and decrypt the message.
For example, let us start with the prime $\mathrm{q}=19$. It has primitive roots $\{2,3,10,13,14,15\}$. We choose $\mathrm{a}=10$. Alice generates a key pair as follows:

1. Alice chooses $\mathrm{XA}=5$.
2. Then $Y A=a^{X A} \operatorname{modq}=a^{5} \bmod 19=3$
3. Alice's private key is 5 and Alice's public key is $\{q, a, Y A\}=\{19,10,3\}$.

Suppose Bob wants to send the message with the value $M=17$. Then:

1. Bob chooses $\mathrm{k}=6$.
2. Then $\mathrm{K}=(\mathrm{YA})^{\mathrm{k}} \bmod \mathrm{q}=3^{6} \bmod 19=729 \bmod 19=7$.
3. So

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{a}^{\mathrm{k}} \operatorname{modq}=\mathrm{a}^{6} \bmod 19=11 \\
& \mathrm{C} 2=\mathrm{KM} \operatorname{modq} \mathrm{q}=7 * 17 \bmod 19=119 \bmod 19=5
\end{aligned}
$$

4. Bob sends the ciphertext $(11,5)$.

For decryption:

1. Alice calculates $\mathrm{K}=(\mathrm{C} 1)^{\mathrm{XA}} \bmod \mathrm{q}=11^{5} \bmod 19=161051 \bmod 19=7$.
2. Then K^{-1} is $7^{-1} \bmod 19=11$.
3. Finally, $\mathrm{M}=\left(\mathrm{C} 2 \mathrm{~K}^{-1}\right) \operatorname{modq}=5 * 11 \bmod 19=55 \bmod 19=17$.
